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Abstract—Laminar boundary-layer flows of gas and liquid having a wavy phase-changing interface are
analytically investigated to predict the features of their disturbance field. The basic field is approximated
to be of linear profiles and perturbed with small wavy disturbances. The rate of phase-change at the
interface is disturbed proportionally to the 1/3rd power of wave number with the phase lag of 150°
relative to the interface. The wavy disturbances have influence on the heat transfer at the interface by
one order of magnitude less than on the skin-friction. Both coefficients are proportional to the 1/3rd
power of wave number. The phase relation of shearing and normal stresses at the interface implies
the same possibility of “water wave” instability of sheltering effect as that for isothermal cases, although
the phase-change at the interface acts to alleviate such an effect both in amplitude and in phase relation.

NOMENCLATURE

wave velocity (U,);
specific heat;

amplitude of disturbance stream function;

amplitude of disturbance temperature;
gravitational acceleration (U2/1,);
amplitude of disturbance concentration;
amplitude of disturbance pressure;

latent heat of vaporization {¢,){T2 — Tiw)};

characteristic length [ = \/(vx/U,)];
pressure (p, U2);

temperature;

velocity components of base flow (U,);
disturbance velocity components (U,);
=U-c;

vapor concentration and its disturbance;

co-ordinates (I,).

Greek symbols

o,
Bna

wave number (I, !);

= (—1)"iat, U,l,o/V,,, Ben = (=i, U,:o/K,,,
B = — i, Uyio/e;

disturbance of interface elevation (/,);
diffusion coefficient of vapor (U,l,1);
dimensionless temperature and its
disturbance;

thermal diffusivity (U, l,);

heat conductivity (pyc,1 Usl,);
kinematic viscosity (U,l,);

density.

Subscripts
0, interface of gas and liquid;
1, gas side;

2, liquid side;

0, infinity.
Values in parentheses or brackets indicate the reference
unit.

INTRODUCTION

SIMULTANEOUS heat and mass transfer of gas and
liquid flows having an interface at their boundary,
where the phase state of the fluid is subjected to
change, is basical and essential in engineering problems
such as two-phase flow, drying process, etc. In a
previous paper [1], an account was given of the solu-
tion of the boundary-layer equations for steady laminar
flows with a plane phase-changing interface through
which mass, momentum and energy were transferred
continuously. It was shown that the phase-change at
the interface takes considerable effect on the flow and
thermal fields of gas and liquid.

Such an interface may be often found to be wavy.
Concerning the mechanism by which kinematic energy
may be transferred from a gas flow to a wavy liquid
surface without mass and heat transfer, a number of
works have been published. By Benjamin [2], Landahl
[3], Lock [4] and Gupta et al. [5] for air flows over
a flexible wall or a water surface, there are three
essentially different types of instabilities possible, which
can be identified with Tollmien-Schlichting waves, free
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surface waves and Kelvin-Helmholtz waves, respec-
tively. An approach to such a problem is to solve
directly and numerically a complete set of linearized
equations of the whole system., as treated by Lock [4]
and Feldman [6]. In cases that both gas and liquid
motions can be separately unstable, however, stability
analyses of this sort are extremely complicated so as
to lose sight of physical reasoning. An alternative is to
examine the features of stresses at the interface cor-
responding to the stationary wavy disturbances super-
posed on the mean field, as used by Benjamin [2] and
Miles [7].

To examine the effect of wavy disturbances upon
the laminar boundary-layer flows of gas and liquid
with a phase-changing interface is thus prompted by
two needs (i) to evaluate the friction and heat-transfer
coefficients of flows having a wavy phase-changing
surface and (ii) to give some informations of the
instability problem of the phase-changing interface. In
the present study, by taking the disturbance to be
stationary relative to the wave on the surface and
considering the perturbed system analytically in an
approximate method, the aspects of the disturbance
field are investigated.

LAMINAR BOUNDARY-LAYER FLOWS OF GAS AND
LIQUID HAVING A WAVY PHASE-CHANGING INTERFACE

We consider, as in the previous study [1], the motion
of a fully developed horizontal stream of incompressible
fluid of gas over a liquid stream. At the boundary
between the gas and liquid fluids, the fluid is submitted
to change in the phase of state, from liquid to vapor
(evaporationj or from vapor to liquid (condensation).
At the point far from the gas-liquid interface, the
gaseous fluid has the velocity U, relative to the liquid
stream and the temperature T, and contains the
vapor of the liquid by the mass fraction W,,. The
temperature of the liquid is T;,. Properties of gas
and liquid are denoted by subscripts 1 and 2, re-
spectively. The flows are steady two-dimensional and
fully developed to form laminar boundary layers with
the common interface of a simple-harmonic wavy
surface (Fig. 1).

In the absence of the waviness of interface, the fields
of velocity, temperature and concentration are solved
in the previous paper [1]. Denote them as (U, V), ©
and W, respectively. Here, the velocity components
(U. V) are non-dimensionalized by U, and the tem-
perature by (T, . — T, ) as

T1—Tloc
TZ‘J_EX"

1=

TZ— Tlao

0, = .
z nm—nm

Ignoring the possible instability of the flow system
with respect to time and accordingly taking the dis-
turbance to be stationary relative to the wave on the
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FiG. 1. Laminar boundary-layer flows
of gas and liquid having a wavy phase-
changing interface.

interface, we can study explicitly the interesting effect
due to the presence of a wavy phase-changing interface.
It is thus convenient to use a reference frame in
which the wave on the interface is stationary, moving
at speed ¢ with the wave, so that the velocity parallel
to the interfaceis (U — ¢), which is henceforth denoted as

U*¥=U-c.

In the case of the liquid stream dragged by an air
flow, the wave speed of the interface would be of the
order of the mean velocity of the liquid, so that we
can approximate Ug = O(U,) which would be a very
small fraction of the velocity of the air flow at infinity,
since Uy = {p?vy/(p3v2)}' " [1].

The elevation of the wavy interface is taken to be
of the form

o= 605':1)‘, (1)

where the amplitude &, is assumed to be small com-
pared with the wave length 2n/a so that (xdg)? is to
be neglected. Let (u,v), ¢ and w be the associated
disturbances of velocity, temperature and vapor-
concentration, respectively. The equations of con-
tinuity, momentum, energy and concentration for the
disturbance fields can be written as
du v

0, (2)

ox ey
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ox cy
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Gas-liquid laminar boundary-layer flows

where v is the kinematic viscosity, x the thermal
diffusivity, ¢ the concentration diffusivity of the vapor,
and

oUu ov _614 v

dy 0Ox’ w_ay ox’

Here, all variables representing a length are rendered
non-dimensional by using, in the gas and liquid fluids
respectively, the characteristic lengths I,, and /,,;

() ()

The introduction of these characteristic lengths allows
similar solutions for the base fields of velocity, tem-
perature and concentration with a plane phase-
changing interface and thus for their perturbation
(disturbance) fields with a wavy interface of small
amplitude. Diffusivities v, k and ¢ are made dimen-
sionless on the understanding that /,U,, is the unit.

Taking into account the equation of continuity, we
put the disturbance velocity components as

u=if'(y)e™, = of (y) ™. )

With the boundary-layer approximation, equation (3)
for w is then reduced to

aiU*F—iU"f) = v(F"—o*F), F=f"—a%. (5
Writing the disturbance temperature and concentration
as

=g(y)e™,  w=h(y)e™, (6)

we have from equations (3)

a(iU*g+Of) = x(g" —o?g),
a(iU*h+ W'f) = g(h” —oh).

Consider now the boundary conditions of the dis-
turbed field. At large distances from the interface, the
disturbances must vanish so that we have

fioo‘:fi/wzoa giooZO’ htoo

Since the boundary conditions at the interface must
be satisfied just at the wavy interface y = 4, it would
seem that the boundary conditions at the mean position
of the interface y = 0 might require a further restriction
on the wave amplitude so that, within the range of
the distance normal to the interface less than the
amplitude, the variations of U, ® and W are negligibly
small. This severe restriction can be avoided by the
linearization of boundary conditions at the interface
y = éas pointed out by Benjamin [2] and Landahl [3].
A quantity ®+ ¢ e®* is linearized at y = §,¢"* in &, as

oD, .
(1)0 + A (SQ + d)o e“’",
¢y /o

M

=0. (8
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where the subscript O refers to values at the mean
position of the interface y = 0. This means that the
corresponding disturbance amplitude of the quantity at
the interface ¢, e** can be expressed as

$o _¢0+<5¢)> d.
2y /o

The x-component of the disturbance velocity and
the disturbance temperature must be continuous at
the interface;

where subscripts 10 and 20 denote the values at the
interface of the upper and lower fluids respectively.
The continuity relationships of the total mass of fluid
and the mass of vapor at the interface give

004 00,
pi| 01 —U*—) =po{ 5= U*_—=), O
0x1/0 0x3/0

064 ow
Wi o, — +wl—e —
P1{ (vl 6x1> h 85)’1}0
00,
) o,
X2/0

respectively, where p is the density, being assumed to
be constant. The additional tangential stress due to
the disturbance and the energy flux must also be
continuous at the interface;

(3u1+5l71
y —_— =
Pt dyr 0xy/o

86, a0, a0,
L5, —U* =1 A 9
< 8x1>0 1(6}’1>0 2<‘7Y2>0 ©ha

where L is the latent heat of vaporization and A the
heat conductivity, being non-dimensionalized by the
quantities ¢,1(The, — Ty} and pic, Uyl 2 (¢, specific
heat), respectively.

The vapor at the interface can be assumed to have
the state of saturation which holds Clausius—-Clapey-
ron’s relation

®)s

dps _ L TZoo'_Tloo Ps
dl, R T, T,

where p is the pressure non-dimensionalized by p, U2
and R the gas constant divided by c,,. This relation
gives the disturbance concentration (or partial pressure)
of the vapor at the interface

s D ~
Wo = WO(F_Fll_Z> = Htglo'—Hp(plO_glél)a ©).
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where g, is the gravitational acceleration non-dimen-
sionalized by U2/I,; and

L (To—Tia)? W,
H=W—|22"%), H=-".
R T Pro

By equations (4) and (6), these boundary conditions
at the interface are rewritten in (f, g, h) expression
as follows;

(fi—iU{d1)o = (f2—iU362)0, (10),,
(g1+©101)0 +(g2+0%52)0 =0, (10),
p1oa(fi—iU*31)o = pa0a(fa—iU*82)e,  (10),
ay(Wo—D(f1 —iU*31)o + Vig(h+W'dy)g
—e(W+W"8)g=0, (10},
pri(ff —iU{d 1 +ai fi)o
= pava(fy —iU362+ 03 f2)0, (10),

La:(f1—iU*51)o
= A1(g1 +9701)0 + A2(92 +©3262)0.

(h+W'é,)o = Hilg, +©O'1()o — Hy(k1 —g16:)0

(10),
(10),

where the primes indicate derivatives with respect to y,
being non-dimensionalized by [, or I,,. 7, and j, are
approximated by v, and po, respectively. The wave
number « and the amplitude of the wavy interface d,
have the relation that

0‘1510 = (12620, AgXg = AzXy = OX. (11)
k is the amplitude of the disturbance pressure defined by
p =ke**, (12)

which is obtainable from the equation of motion in
the x-direction;

ak = v{ " —iU"S—a?(f —iU’8)}

—iaU*(f —iU'8) - V(f"—iU"8) +ialU'f. (13)

The balance of normal -stresses at the interface may
give an additional relation of the pressure (including
the effect of gravity and surface tension). We consider
only the disturbances stationary relative to the wave
on the interface so that there exists reaction for the
disturbance flow to maintain the specified wavy dis-
turbance. Without the external forces corresponding
to such reaction, the wave number should be deter-
mined by an eigen-value problem of the system. If we
take the normal stress condition as the external
necessity of maintaining the disturbance of wave
number a, the disturbance pressure is then determined
as a subsequent quantity of the resulted disturbance
field.

We have thus two fourth-order differential equations
for f and two second-order for g and one second-order
for h with seven boundary conditions at infinity and

seven at the interface. In view of the boundary con-
ditions at infinity, f, g and h can be written with
constants A4, B,, C,and D as

Jo = Anfant By fon.
gn = Angan+Bngbn+ Cngcna
h = Alha+Blhb+Dh4,

(n=12) (14)

where f, and f, are the solutions of equations (5),
Jda» Gy, h, and h, the solutions of equations (7) cor-
responding to f, and f;, respectively, and g¢. and h,
those of equation (7) with f = 0. The boundary condi-
tions at the interface can be expressed in the form

A1 A + b1 By + G Az + b2 B+ Cr + Cma s
+d,D+e,dy =90,

(m=u,s,ctqwe (15

where a,,, bmns Cmn» dn and e, are functions of the
values of f, g and h at the interface (see Appendix).
The solution of equation (15) gives A,, B,, C, and D
corresponding to &,. Since equation (15) is linear, we
can set §, = 1 for simplicity; thus, values of 4,, B,,
C,and Dare to be interpreted finally as a multiple of d,.

In order to examine quantitatively the effect of the
wavy disturbance, we proceed to an analytical treat-
ment of the problem with an approximation of linear
profiles for the mean field. Since the disturbances
diminish very rapidly with increasing the distance from
the interface, the region where the magnitude of dis-
turbances is significant in comparison with their values
at the interface can be assumed to be largely covered
with the linear profile region of the mean field, over
which we can assume approximately

0 = 0y +0)y,
W = W+ Wgy.

U = Uo+ Usy,
(16)

With this linear distribution of the mean velocity,
equation (5) can be reduced to

o Ug —iav
F”+_—U5(y+ ¢ _ >F=0. (17)
iv U,
Defining a co-ordinate z as
z=y+z9, 2zo=(Ug—iav)/Us, (18)

we can rewrite the above equation for the upper fluid,

FY+p12:F; =0, py= —iogUfo/vy, 17y

of which the solution is a linear combination of the
functions F¥)(z) and F?(z);

FO-2() = /zH{7 (G /B2,

where H{}} and H{}} are the Hankel functions of order
one-third of the first and second kind, respectively.



Gas-liquid laminar boundary-layer flows 889

Accordingly, equation (5) for the upper fluid

{’"“%fl =F (19)
subject to the boundary condition f; = f{ =0 at
y1 = oo has the solution of
fi=Aye™

Zj. FA(G)sinh{ay(z; — &)} d&
+By |- dme (20)
e“””’J\ F{z’(f)e_"‘é d¢
Z10
For the lower fluid (y < 0), denoting
=J2+230, J2= —)2. £20= — 220,
B2 =inaUso/va, (21)

we can take the same manipulation as the above to
obtain

fz - A2 e“"zzfz

2 f P @sinh (w2~ O} g
+32 en’% S L L

pos (22)
e?2tn J- Fé”(f) e %28 d¢

Values of £, " and " at the interface are thus given by
f;.o = A,, + B,, )

Joo = (—1)"0y(4,~B,), (n= 1,2)} (23)
n() = az{A +(1“'{n)B }
where
1 = 2F(2)(210) i
oy e‘lxzmj‘ F{z){:) e“zxé df
(E370-
T = 252 (220) . (24)

4 ¢ J Fh@e>sdg

Next, we consider the temperature field. Equation (7)
with (16) becomes

o
g"'*‘,Bxeg = ;be’ (25)
where
Ze = y+ixo, 2x0=(U(,)."-iaK)/Uéa
B = —iaUg/x,. (26)

Defining functions G and G® as

G I(z) = /2 Hi} PG /B 2212,

we obtain the following solutions of equation (25) for
the upper and lower fluids, respectively,

5= CiGP +
"2t L]
o[ " omnacear | " egnad.
Ztn 21 & (27)
ina
g2 = GG +— 5 hj %

(* 2
x {G&” G4, 4+ G f

G2

G¥f, df} .

Ze20 J

With equations (20) and (22), equation (27) gives values

of g and ¢’ at the interface
dno = An GanO ~+'-BnGlmO + CnGcn05
(n=12) > (28)
where G0 and G, are functions of z,,, and given
by equation (A3) in Appendix.
Replacing x and ®; by ¢ and W; in equation (27),

we obtain in the same way values of h and &' at the
interface

g;@ = Au G:m() + BnG;m{) + CnG;nO >

ho = A Hyo+ ByHyo+DHyo 7} (29)

ho = A1Huo+ B Hyo+ DHy,

where H,, and H,, are functions of z,, and given by
equation (A4) in Appendix.

Since we may consider the length [8]”'? as a
measure of the effective thickness of the disturbance
field, the assumption that this thickness is small com-
pared with the thickness of linear profile of the mean
field can therefore be expressed as |#]7 "% = 0(1) or
less which means

jod UIIO ~13
o —2) <1
Vi

Thus, for sufficiently small wave numbers, taking
account of U = O(Uy), we may take |fY/2z3/% |« 1
which requires

(GC;U{Q)UZ( Ué")aﬂ
— « 1.
Vi Ule

For the present configuration of the flow system, the
last condition could be always satisfied if a, and v,
have the relation of a,Uj,/v, = O(1) or less. We can
now approximate 1, as

2:313 pis3 I”in
n:——*——e nt S T s
"ETR o P TV

which means |7,| » 1, and similarly G0, Gonos Hmo
and H,, as a power function of 8, or f, as shown
in Appendix (AS).

Substituting values of f, g and h at the interface
(23), (28) and (29) with these approximations into the

(30)

E2Y)

(32)
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boundary condition (15), we can determine constants
An. B,, C, and D to obtain the disturbance field at the
interface, equations (AR) and (A9).

The disturbance normal velocity at y = 0, «a, f1,, is
thus explicitly given by equation (A8) as

, 3 O
110[11+e b 3r ﬁl/“s (13 23r( )/)11 3 U%O

10
_*_efzn;s?f_l I+eAIZn13/2 ﬁxz e
H, A\ By

1=W,—37 1T 3B P Wy
X $ Hyplgy +—— s (3”31,3 -2
Vio+e™ Toef!
) _ /L7¥ @20
— Ux g +ie™3 WIry a2 2 e
! 0{ ! ! ( g L Vo Uzg

5 13
in/3r 1,‘3/’1 G)/ —i2n/3 2V1 'BKZ ’
+e 0Bt — ote : 20

41 V2 Bxl

1 _1,!3'12 Bz
e ()

idl(VVg _ 1)U0*+ei”/3 Foc‘fﬂe“a%
_ _ . (33
* { o+ Vig+e™? Toefl? &)

where Ty = 3'3T(3)/T(4). The right side of the above
equation means the disturbance heat flux into the
interface and the left is the disturbance amount of
phase-change. Both sides physically consist of three
terms, attributed to the disturbed convection field
{~a,). the disturbed temperature field (~©j}) and the
change in the interface temperature (~H, '), re-
spectively, The disturbance rate of phase-change
B10/(V10d1) = a1(fi — iU/ Vi, is graphically shown in
Fig. 2. The order estimation of the terms of the above

a2

{a) Amplitude.

Fi1G. 2 stturbance rate of phase-change. Water—air, Ty = 100°C, ¢ = 0;—, T, = 60°C, W, = 0;——~,vi ' =10, W, =0
=10, Ty, = 60°C: V(T °C, W) = 0:00123(20, 0), 000989(60 0), 0000472(60 02), 00245 80, 0).

e V1

SusuMu KOTAKE

equation shows that the most predominant on the left
side is the one attributed to the disturbance con-
vection field (~a,) and on the right those due to the
disturbed temperature field (~®}) and due to the
disturbed convection field (~a,), so that we can
approximate the disturbance normal velocity as

) . LA .
al./lozemaroﬁxliaf(— Yol +ia U, (34)

342 11(5&2) P
e . 20y
Al Va ﬂxl

or the disturbance rate of phase-change as

1o = —@jteri

e Ko (o1 Uig\'?
Bro=¢” %(T) K1~ @)% (39)
- 1
(___ ’ )*: —@ +e—ix/3 ,pl—Kl ”34_%2 ’20.
10 1o P2K2 Ay vy '

where Uzo/Ujo = pyvi/{p2v;) Is used. The normal
velocity at the interface is thus proportional to the
1/3rd power of the wave number with the phase lag
of 150 relative to the interface, as shown in the figure.
The disturbance velocity gradient at the interface
ity o/(Uio01) = ifyo/U{, given by equation (A8} is shown
in Fig. 3. It is noted that &, implies the disturbance
friction coefficient at the interface ¢, defined by

Ouy . L2
1Vl 3 = rp U — Uz )’
C¥i/o

of which dimensionless form is cply/vy = &f;,. With
equation (34) and the relation that |1,], |15] > 1. we

-i180°
W, =02 V‘l
oo’\ 1,10
O
B =10 = N——— T ‘‘‘‘‘‘‘‘‘‘‘‘‘‘
20 80 J
L- s °C 100
o
2 2o
%
nT
I
o
-20 -
) ] bt | Ll
605, o1 f

{b) Phase angle.

»
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(a) Amplitude.

F16. 3. Disturbance friction coefficient. Water-air, Ty, = 100°C, ¢ = 0; —, Thy, = 60°C, W,,
——— i =10, Ty, = 60°C: Ul4(Ths,°C, W,,) =

obtain the following approximate expression for £/,

1/3
: dlUl'O
Sfio= g/ rtoh( N ug

1

o a, Ul 143
+e‘5m3rl(*1‘19> Uxo'“ 20
V1 V2

L (0,Uip\ ;
atzz(dl 1°> (1 KD~ O )

; Uio
4O Fa? ( ) ,
vi\Usg

where I, = 32 I'3 and T, = 3%3/T'(}). The right side
of the above equation comprises two contributions
from the disturbance fields of the modified mean field
of velocity [ the first (~a*?) and second (~«'/) terms)
and of the disturbed velocity field due to the phase-
change [the third (~«*?) and the fourth (~?)]. The
latter contribution, that is, the phase-change at the
interface has less effect upon the friction coefficient
Uy0, which is then largely dominated by the second
term, being proportional to (x;/v,)!*> and 30° in
advance of the interface,

The disturbance pressure p;o/d; = k;q 15 given by
equation (13) and shown in Fig. 4, being proportional
to (o;/v,) ™1 and (ay/v,)*? at smaller and larger wave
numbers, respectively. In the analytical expression of k
by equation (13), the most predominant is vf'";

+ e

Y1

(36)

s

oikyg & v f{g.

891

VI
100
‘o\
kY
\ BN
Tp £20,80°C
» 02

(b) Phase angle.

. -1
=0; v =

10, W, =0;

0:323(20,0), 0-263(60, 0), 0-329(60, 0-2), 0-168(80, 0).

1y

Since equation (20) gives f}

U /
fm emg/ rzal(flo+f10)(alv 10)
231 1

with equation (34) and (42), k,, is then given by

. : I )23
kyo =" rz{eﬂ"/é =2 (U{0)1/3(2> (-9 )*
"‘L £33
Uy U\ *?
L 1°}v1(£1v“1’0> . 037
%y ¥

of which the third and second terms become more
effective at smaller and larger wave numbers, being
proportional to «{ ' and «¥*, respectively, with the
phase advance of 150°,

An interesting feature of equations (36) and (37) is
the phase relation between the stress and the wave at
the interface. To first approximation, shearing stress
(~uiy) is approximately 30° in advance of the wave,
while the phase of the normal stress is about 150° in
advance. These phase relations are accordant with the
Benjamin’s result of linear or boundary-layer profile
model, which may be interpreted as a kind of Jeffereys’
“sheltering™ effect that the stresses are distributed as
if the feeward slopes of the wavy interface were
sheltered and a wake were formed behind each wave
crest. The effect of the phase-change upon the stresses
at the interface is expressed by the terms of (— @/ ()*
which becomes relatively predominant at larger wave
numbers or for the case of higher vapor concentrations

approximately as

+ilU,
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180°
Tw °C ot e v
150 20
L
. e
— ©
o] ~ —
03 | 9:9 120
o o
- 5 L
90
. | | Lt 1 30 U I DO |
Ry ol | 60OO| Ol !
a, a
(a) Amplitude. (b) Phase angle.
FiG. 4. Disturbance pressure at the interface. Water-air, T}, = 100°C, ¢ = 0; —, T, = 60°C, W, = 0; —~, v{ ' =10,
W, =0, ———, v{1 =10, T, = 60°C.

at infinity (condensation taking place at the interface).
They have the phase relation of 150° for ujo and —90°
for k;, in advance, respectively, and act to weaken
the “sheltering” effect in the phase relation. In the
evaporation case, the “sheltering” effect may be also
reduced in amplitude by the decrease of U and —®,.

The disturbance temperature gradient at the interface

05 180°
~150H
0 g |
= w
o i)
=] @ V;'
T -i120
g = 100 :
\\9 ~ 10 TZm c Ww
@ 2 | 80 0 2\_
d 5 Y 7
— 7 e
-90 _
20
~ 1 [ 1 L]
80501 o1
a,
(a) Amplitude. (b) Phase angle.
FI1G. 5. Disturbance heat-transfer coefficient. Water—air, Ty, = 100°C, ¢ =0; —, Ty, = 60°C, W =0; ——, vil=10,

076/(@1061) = g10/O}, given by equation (A9) is shown
in Fig. 5, being proportional to «~%/, Here, | —0;,]
implies the amplitude of the disturbance heat-transfer
coefficient at the interface ¢, defined as

- (0T
Al =) = alTiw— Tau)
0

-
“h

W, = 0; ———, vi ! =10, Ty, = 60°C: —&4(Ta °C, Wy} = 0-288(20, 0), 0-243(60, 0), 0:292(60, 0-2), 0-169(30, 0).
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of which non-dimensional form is ¢,l,;/A; = —61. The approximate expression for g}, is

. oy 13
gio=ie™? ro(&’c)“(;_’
1

) 1/3 ) —LA ; ~1/3 2/3
.[(fw—fua)<—®;o){1 +ei2el3 rﬂU@)*ﬁ(?) }+€“/6(f10“' iU — J(Yi 2 Uz'o) (5:—‘>
1

1

o A2

Vi K2

13 173 173
+iUJ<{—®;o>{1+eWrs(U;orz’s("_‘—‘) }+®’20{1+e'““r33’3("2’?) <Uso)‘2f3(i‘) D] (38)
Ky Vi\ViKz Ky

where I'; = 37 7/%/T"(3), which comprises the effects of
the disturbed temperature field due to the disturbed
flow (the first and third terms ~ ®;) and the dis-
turbance amount of heat for phase-change (the
second ~ L). The predominant terms of them yield

b1 Thn 1,
7 = —(—010)
©1d: /3T ~L

31813 {e—hﬂ Ay (p;x,)“ 13 (=0,0)*

I_‘(:lx) A\ paK2 ~®10

4 ei2n/3 U&"(l _%)}(a; U{o)l/a
1o Ky

which shows the proportionality to (x;/x,}!/* and the
phase lag of 90° in the case of intense evaporation.
Comparing the predominant terms of equations (36)

and (39) gives
- Ay (Pz’fz)lH(V:) 13
Ay \pixy Ky |

of which the order of magnitude is about 0-1, being
contrasted with the steady value |®,/U{sl~ 1. This
indicates that the waviness of the interface causes
disturbance to the heat-transfer coefficient by one
order of magnitude less than to the skin-friction. Of
the temperature field, the wavy disturbance at the
interface is almost absorbed into the liquid because
of its high heat conductivity and the heat flux required
for the disturbance rate of phase-change at the interface
is supplied mostly by the heat conduction through the
liquid layer.

The disturbance coefficient of heat transfer of the
liquid side is then given by

39

ko
[ 1Uio

a
10

— 40
C 4o

s 3T Ay (@, Ufo\ 2
o o700 2 OB (BN T 6

e —
920 rd A\
of which the ratio to gi, is {pix/pax;)'® = 0-1-1.
On the other hand, the ratio of f3, to f{, is
P1Vy/pavy =1072-1073,

The disturbance u-velocity and temperature at the
interface given by equations (A8) and (A9) are approxi-

mated as

2

. , P1v
ifiox —U10(1 ‘l—;>, {42)

P2vz

i A —13
Jro= e—mmi(@i} . (43)
A2\ paks

To first approximation, both disturbances are relevant
to neither the wave number nor the Reynolds number.
These equations show that the overall disturbance
u-velocity at the interface #;,, which is the sum of
if{¢d; and U{yd,, is nearly equal to zero; that is, the
overall u-velocity at the interface remains undisturbed.
Since |g;0] « {®},], the overall disturbance tempera-
ture at the interface is then roughly 8,5 ~ ©1,4;.

CONCLUSION

Laminar boundary-layer flows of gas and liquid
having a phase-changing interface are perturbed with
a small wavy disturbance to examine the aspect of
their disturbed fields and the effect of the phase-change
upon the hydrodynamic instability of the system. To
obtain quantitative knowledge of the wavy disturbed
field, the problem is treated analytically with an ap-
proximation of linear profiles for the base field.

Corresponding to the disturbance elevation of the
interface 8, €™, the disturbance u-velocity gradient at
the interface, that is, the skin-friction is

’ 2 ’ 1/3
_“2 = {1-066(1 _’L‘v_;> (ﬂﬁ?) oin/6
Ulo p2v2 v

("1?\"})1/3 o Ui 2/3(—9'10)*
+0-776
L Ui, °

i5ﬂi5} 510 eﬁzx

Vi

The disturbance pressure acting on the interface is
given by

1 Ky 23 N
Pro= {0'565‘:5(‘)—) Ulo(—O)o)*¥e™*/?

1

Uio\ [#Uio\** | 4
+0‘776(U0 + —10> (M) e's"/e} V1510 e,

Ay Vi
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To first approximation, the phase relation of the
shearing stress (+30°) and the normal stress {+ 150°)
relative to the wave at the interface is accordant with
the Benjamin’s result for the case of isothermal flows,
showing the “sheltering” effect. The phase-change of
evaporation at the interface acts to weaken such a
“sheltering” effect both in amplitude and in phase
relation, especially at larger wave numbers.

The disturbance rate of phase-change at the interface
is approximately estimated as

2 Ui\ 1i3 A
0= 0728 ML<CXIKJ) (=@ )*d,,eihx~5/6),
1

which is proportional to (x;/x,)""> with the phase lag

of 150°. The temperature gradient at the interface,
that is, the heat-transfer coefficient is

0 —@)0)* Ui\
~1,—°=[0-342( to) +0-728<“‘ ‘°>
L Ky

10

{il<pw1)"/3(~®ao>*e
A2 \pP2K> -0,
%)\ . L

+U* 1—-—=2 el21t/3 S5 ux’
( @’u) H o°

which, for intense evaporation, is proportional to
{ot1/r1)*? with the phase lag of 90°.

Because of the high heat conductivity of the liquid,
the heat flux required for the disturbance rate of
phase-change at the interface is supplied mainly by
heat conduction through the liquid layer, so that the
wavy disturbance has less influence upon the heat-
transfer coefficient than upon the skin-friction. The
ratio of the former to the latter is about

—in/2

jn//zz(Pz’\'z/’m"'1)”3 ~ 0-1.

The disturbance u-velocity and temperature at the
interface are relevant to neither the wave number nor
the Reynolds number and approximately given by

2
, P11V ;
Uig R U10<1»*2 O1extm),
p2v

2v2

00~ /:1 <P1K1> 1'3(_®ao)aloei(zx+2m3),
£2\P2K2

which have the phase advance of 180° and 120°,

respectively; that is, the overall disturbance u-velocity

and temperature at the interface can be approximated

as 0~ 0and 8,4 = ©,8,0e%*, respectively.

Susumu KOTAKE

The assumptions which form the basis for the ap-
proximations introduced in the present theory may
restrict the validity of the obtained result within the
range of parametrical quantities o, and v, that

<0¢1U1'0>A1‘3
oAy — | « <1
vy
(0(1 71/O>1/2<U0*>3/2
- — « 1.
Vi 10

Since the latter is satisfied for the present flow-
configuration if o; Uj/v; < 1, these restrictions can be
arranged to give

and
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APPENDIX
Disturbance Field at the Interface

The boundary conditions at the interface (15) with 5, = 1
are expressed in a matrix form

dy bu @z by 0 0 0 ¢, ) (A1) =0

agq by asp by 00 0 e B,

as by aa by 0 0 0 e Az

a3 by Gz bz ¢ 2 0 ¢ Igi (Al
ag1 byt ap b 2 0 ¢ C,

awi byy 0 0 0 0 dy ey D

a,q by 0 0 ¢ 0O do e L1
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Where dun, By Cons dmand e, (n = 1, 2) are from equation (10)
as follows;

A= —(=1)"(fado  bun = (dun)a-p

e, = —i(Ujo—Usovi/vs)

Ay = = (=1)"0Vul fan+ 0 fan)o  bon = (@sn)a-p
e, = —ivi(p1 Ulo— p2Uso)

gy = = (=1)"pyvalfando  ben = (dea)a~s

ec= —i(p1—p2)ni U

am = (Gando b =(gbn)o  Cin = (gen)o

e, = Oy +0O%vy/v;
g1 = a1 far)o —A/Liga1)o bql = (aql)a—»b
a2 = —A2/L(ga2)o  bg2 = (ag2)amb  Can = — An/L(gin)o
ey = —it U — (41070 +v1/v2 . 1,0%,)/L
Ay = {0 (W=1)for + Vihar ~ehar}o  but = (@wi)a~s
dy, = Vihg—ehy)o e, = {—iay(W—1)U*+ W —eW"},

gy = (ha— Hygo1 + Hpkar)o ey = (@er)ams

Car = —H{ge1)o de=(h))o e.= —Hpg,+Wo—HO,
where ()., means that all values of the type ¢,, included
in () are replaced by the corresponding values ¢s,.

Eliminating Cy, C, and D in equation (A1) becomes

(2 bul %) bu2 €y Al =0
B
as1 by, asz bsz €s !
A, (A2)
Qcy bcl aca bcl € B2
* * * * *
ag1 91 Qg2 92 €g 1

where

afy = as(far)o +agf*

A1 {Ga1 Ay (iz g2 g
af*=——gu—9a +—
- L(ch Jer ™Gt o LH\A1 g2 Ger/o

bk
{Hpk,,, +[(1 W)ty fur +sh,,1<vl——d>]
hal hd 0
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Arfga Vi iz((]éz )
**E—' - Y 4= ’ _@v
€ L(g” 10 10 vs L \guz 20 20

A (. d . I

+~1—<—Egﬁ—-gi> {—H,,gl+<V1—s—d>

LH\Z; g2 ger/o ha/ o

(W — Do U*+eW’ W h;)]
AW = - .
Ay & w hd .

Values of f, g and h at the interface are given by equations
(23), (28) and (29), where Gono, Gmnos Humo and Hy,o are

Grno = GunGi™(2cn0)  Grmno = Goun G (o)

(m=a,b)
it o ©
Gt = - — @'mf G{VE, d¢
6 Ky 10
. (A3)
in oy ©
Gy = —— ®'20J‘ Gﬁz)sz d¢
6 K2 Ze20
Geyo = G(xz)(zno) Goo = Giz)/(lxm)
Geao = Ggl)(zxzo) G20 = GY(2¢20)
H,o = Hch(l)(zsl()) Hyo = HmHs(l)l(Zno)
Hyo = Hc(z)(zelf)) Hjp = Hsml(zzlo)
ina o
Hy= % W(;I HOFpy dg (A4)

H = JzH{BG /.27

where F,, and F,, are the coefficients of 4, and B, on
the right of equations (20) and (22), respectively. When
|BY?23/%| « 1, we can approximate these values as follows;

~

in 2 a,

— G =Tl g prie(n T
bn 6\/3'\',, n0 Pen ’6

2 313 in
) = o =)
VAT 2) 7

Gan

(AS)

2 323 in
’ 1/6
G (zeno) = —= = Bl el m— |,

ST

6

AN
N
ha/o
b = ay(for)o + bEF b} =(af¥)-»

A2 { Gaz , ,
ap = *(gi gc2_ga2> b¥ = (af2)a-s
€2 )

L
ey = —ix, Ufel*
—ay oy —a;
ORI
P2 \V2 P2\V2 2
P P _n
P2 P2 Vi
L %1 t+af a2 +bY a3

e(n, x} = exp{ — (— 1)"x}

which hold for H and H' by replacing x and ®; by ¢ and
W, respectively.

Substituting values of f, g and h at the interface given
by equations (23), (28) and (29) with (A3), (A4), (A5) and (32)
into the boundary conditions (A2) yields

N a0
v A =0
® —i<U1'o—U2'o—l> !
V3
B,
TER
2 A, (A6)
v
-2 - i(& - 1) v¢ | | B,
Vi P2
b3 —iu U +e* ) 1 )
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where Equation (A6) gives constants A, and B,
2 <A1>_1 T i U Vi Ul +'4_T2U*
a¥ = b} =e_'."/33”3—r(3)ﬁﬂ'}f’[i}'zﬂr&)ﬂl?,@ﬁ B, 2 oy 10 V2 0%t T2 ’
rég) L U
(3') 10 vy a; —-i(l1U6'+8*
/3 1 i > & — . (A7)
ooy omn(B) )
I-Il BKI '{I

<A2> _ 1(1 4—1:2) Vi,
1—W0—3‘”3r(§)[3_”3W6:| B, 2 2ty /v ¢
g ’ here p1/p, « 1is assumed.
RARIATA T (Depla | WG pi/p;
Vio+e™ P 31PTE)T(5)ef. With these constants, equations (23) give the disturbance
flow field at the interface;

; 4, 20 \
* _ h¥ — _jeain/33-1/3 42 52/3 =20 ) 1 a
af = b¥ ie"3713T(3) L Bes Uso o= A, +B, = *{ial(l—j) U&'—e*}
@y +af oy
l.,, ré) i v
l’*=—e /331/3@ZB):/13 f20=A2+Bz=l.;iU0*
L oy semms(B2) v da g fio =oal=di+ B > (AB)
10 20 . , Vi .., A4-1,
b/ va ki =i\ Ulo——Uzo ) —i Ug
va 7,
1/3
+i{1+e-m<ég> E} to = a¥(4,+B,) —alt,B,
H B A z{f Tl(f +ffo>}
=u1yJro—5\| JroT—" ¢
iy (Wo = 1) U3+ 31T @)L (})ep > Wy 2 2/}
Vio+ e 31T @Y (Hept? : By eliminating C, with equations (Al), and (Al), to

obtain C;, equation (28) gives the disturbance thermal field
at the interface;

A : -1 Az gi2 (A1 ge : )
gm=(~2"’f‘@—l) [——Zgﬁ{—’-",—zgn(l—gf‘@>(A,+Bl)
A1 i1 Gez 0 A1 Ge2 {42 ge2 ge1 Gar

€ c : L (3
4 91 g,2<1 ~5£—’l> (A2+Bz)+g+‘e,} I g a4y +B,)}:|
g, 9e2 Ga2 Je1 A1 ger 0

(33

, A2 Ges G2 Az ge et Gat
Jro=\| -1 - Gar{ 1 ——
A1 ge1 ez 0 21 ge2 get Gar

L (A9)

)(A1+B1)

C /ﬂ L
+g,,2(1 929 2)(/12+132)+e,} - Herta(y +B1)}]
1

ge2 Ga2 0

where, in virtue of equation (AS), we can use the following approximation

, 2 .
Guno _ 1313 L) wae(n E)

Gano g™ \"e
Geno = 33 E(%_) "1{.3 (n’ _lﬁ)
Geno @) 6

2 313, in

=i T —2/3@; —_—
Gano i 9 r(-%_) Kn an ,,09(71, 3>

where n = 1, 2 and e(n, x) = exp{ —(~1)"x}.

ECOULEMENTS GAZ-LIQUIDE A COUCHE LIMITE LAMINAIRE
AVEC UN INTERFACE ONDULE DE CHANGEMENT DE PHASE

Résumé—On étudie analytiquement des écoulements de gaz et de liquide 4 couche limite laminaire avec
un interface ondulé de changement de phase, pour déterminer la configuration du champ de perturbation.
Le champ de base est approché par des profils linéaires et perturbé par des petites ondes de perturbation.
La vitesse de changement de phase  l'interface est perturbé proportionnellement a la puissance 1/3 du
nombre d’onde. La relation de phase des contraintes tangentielles et normales 4 Iinterface implique la
possibilité d’une instabilit¢ “d’onde liquide” a effet de protection comme dans le cas isotherme, bien que
le changement de phase a linterface agisse pour diminuer cet effet a la fois en terme d’amplitude et
de phase.
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LAMINARE GAS-FLUSSIGKEITS-GRENZSCHICHTSTROMUNGEN
MIT WELLIGER GRENZFLACHE

Zusammenfassung —Laminare Grenzschichtstromungen von Gas und Fliissigkeit mit welliger Phasenin-
derungsgrenzfiiche werden analytisch untersucht, um die Figenschaften ihrer gestorten Schicht zu
bestimmen. Die Unterschicht wurde durch lineare Profile mit kleinen, welligen Stdrungen angen#hert.
Die Phaseninderungsrate an der Grenzfidche ist gestort proportional zur Potenz 1/3 der Wellenzahl
mit der Phasenverschiebung 150° relativ zur Grenzfliche. Die welligen Storungen haben einen um eine
GroéBenordnung kleineren Einfluf auf den Wirmeiibergang an der Grenzfldche als auf die Oberflachen-
reibung. Beide Koeffizienten sind proportional der Potenz 1/3 der Wellenzahl. Der Phasenzusammenhang
der Scher- und Normalkrifte enthélt dieselbe Moglichkeit der “Wasserwellen”-Instabilitiit des
Schutzeffektes wie fiir den isothermen Fall, obgleich der Phasenwechsel an der Grenzflache beziiglich der
Amplitude und des Phasenzusammenhangs eine Verminderung eines solchen Effekts bewirkt.

JJAMUHAPHBIE TTOTPAHUYHBIE CJIONM B XUAKOCTU U I'A3E NP1 UBMEHEHUU
®A3bl BOJIHEI HA TTOBEPXHOCTU PA3JEJIA
Annorauns — JIa U3yueHHs: 0COOEHHOCTEH MO BO3MYLLUEHHI aHATHTHYECKH MCCIIEAOBATHCh TaMHE-
HapHble NOTPAHHYHBIE CJIOM B ra3e M XHAKOCTH BOIM3H MMOBEPXHOCTH pa3nesa mpyu W3MEHEeHHH ¢a3bl
BOJTHBI. OCHOBHOE IT0JIE ANPOKCUMMPOBAJIOCH THHEHHBIMH TIPOGHIAMH H HAPYLLIAIOCH HEGONBIUKME
BOMTHOBBIMH BO3MYLUEHHSAMH, CKOPOCTh W3MeHeHHs (da3bi BOJIHLI Ha TIOBEPXHOCTH pa3lenia H3MEHs -
eTca MPONMOPLHOHANLHO BOJHOBOMY 4MCNY B cTeneHu 1/3 ¢ orcrasanueM mo ¢dase B 150° oTHOCH-
TEJILHO MOBEPXHOCTH pa3nena. Bo/sHOBEIE BO3MYILUEGHHSA HA MOBEPXHOCTH PA3leiia CKa3bIBAIOTCA Ha
TemnoobMeHe Ha mOpAOoK cjabee, YEM HA MOBEPXHOCTHOM TpeHHU. Oba xoadduuHeHTa nporop-
UHOHAJIBHBI BOJTHOBOMY 4HCITY B cTenen 1/3. CooTHoLIeH e (ha3 MeX Iy KacaTeIbHbIM U HOpMaIbHBIM
HampsOKEHHAMH Ha MOBEPXHOCTH pa3nesa MpPeAIoyiaraeT, Kak U B H30TEPMHYECKHX Cly4asix, He-
CTabHILHOCTh ONpOKUObIBalolero 3¢dekTa, XOTs H3MEHeHHe a3 HA IOBEPXHOCTH pazfena
obneruaer nosBnerHe 3TOro dPdeKTa Kak no amMIIUTyae, Tak H no ¢dase.
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