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Abstract-Laminar boundary-layer flows of gas and liquid having a wavy phase-changing interface are 
analytically investigated to predict the features of their disturbance field. The basic field is approximated 
to be of linear profiles and perturbed with small wavy disturbances. The rate of phase-change at the 
interface is disturbed proportionally to the 1/3rd power of wave number with the phase lag of 150 
relative to the interface. The wavy disturbances have influence on the heat transfer at the interface by 
one order of magnitude less than on the skin-friction. Both coefficients are proportional to the 1/3rd 
power of wave number. The phase relation of shearing and normal stresses at the interface implies 
the same possibility of “water wave” instability of sheltering effect as that for isothermal cases, although 
the phase-change at the interface acts to alleviate such an effect both in amplitude and in phase relation. 

NOMENCLATURE 

wave velocity (U,); 
specific heat; 

amplitude of disturbance stream function; 

amplitude of disturbance temperature; 

gravitational acceleration (Uz/I,); 

amplitude of disturbance concentration; 

amplitude of disturbance pressure; 

latent heat of vaporization [cP1(Tzm - T,,)]; 

characteristic length [ = J(vx/v,)]; 

pressure (pl Ui); 

temperature; 

velocity components of base flow (U,); 
disturbance velocity components (U,); 
= v-c; 
vapor concentration and its disturbance; 

co-ordinates (I,). 

Greek symbols 

K, 

1, 
V, 

P, 

wave number (I;‘); 

= (- l)%,U&/v,, 8. = (- l)nid(,U&/K,, 

PC = --ialU1,/ ’ E; 
disturbance of interface elevation (I,); 

diffusion coefficient of vapor (UJ,,); 

dimensionless temperature and its 

disturbance; 

thermal diffusivity (U, 1,); 

heat conductivity (plcP1 U, I,); 

kinematic viscosity (U, I,); 
density. 

Subscripts 

0, interface of gas and liquid; 

I, gas side; 

2, liquid side; 

a, infinity. 

Values in parentheses or brackets indicate the reference 

unit. 

INTRODUCTION 

SIMULTANEOUS heat and mass transfer of gas and 

liquid flows having an interface at their boundary, 

where the phase state of the fluid is subjected to 

change, is basical and essential in engineering problems 

such as two-phase flow, drying process, etc. In a 

previous paper [l], an account was given of the solu- 

tion of the boundary-layer equations for steady laminar 

flows with a plane phase-changing interface through 

which mass, momentum and energy were transferred 

continuously. It was shown that the phase-change at 

the interface takes considerable effect on the flow and 

thermal fields of gas and liquid. 

Such an interface may be often found to be wavy. 

Concerning the mechanism by which kinematic energy 

may be transferred from a gas flow to a wavy liquid 

surface without mass and heat transfer, a number of 

works have been published. By Benjamin [2], Landahl 

[3], Lock [4] and Gupta et al. [S] for air flows over 

a flexible wall or a water surface, there are three 

essentially different types of instabilities possible, which 

can be identified with Tollmien-Schlichting waves, free 
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surface waves and Kelvin-Helmholtz waves, respec- 
tively. An approach to such a problem is to solve 
directly and numerically a complete set of linearized 
equations of the whole system. as treated by Lock [4] 
and Feldman [6]. In cases that both gas and liquid 

motions can be separately unstable, however, stability 
analyses of this sort are extremely complicated so as 

to lose sight of physical reasoning. An alternative is to 
examine the features of stresses at the interface cor- 
responding to the stationary wavy disturbances super- 

posed on the mean field, as used by Benjamin [2] and 
Miles [7]. 

To examine the effect of wavy disturbances upon 
the laminar boundary-layer flows of gas and liquid 

with a phase-changing interface is thus prompted by 
two needs (i) to evaluate the friction and heat-transfer 

coefficients of flows having a wavy phase-changing 
surface and (ii) to give some informations of the 

instability problem of the phase-changing interface. In 
the present study, by taking the disturbance to be 
stationary relative to the wave on the surface and 

considering the perturbed system analytically in an 
approximate method, the aspects of the disturbance 
held are investigated. 

LAMINAR BOUNDARY-LAYER FLOWS OF GAS AND 
LIQUID HAVING A WAVY PHASE-CHANGING INTERFACE 

We consider, as in the previous study [l], the motion 

of a fully developed horizontal stream of incompressible 

fluid of gas over a liquid stream. At the boundary 
between the gas and liquid fluids, the fluid is submitted 
to change in the phase of state, from liquid to vapor 
(evaporation) or from vapor to liquid (condensation). 

At the point far from the gas-liquid interface, the 

gaseous fluid has the velocity U, relative to the liquid 
stream and the temperature Ti,, and contains the 
vapor of the liquid by the mass fraction W,. The 
temperature of the liquid is TZcu. Properties of gas 
and liquid are denoted by subscripts 1 and 2, re- 

spectively. The flows are steady two-dimensional and 
fully developed to form laminar boundary layers with 

the common interface of a simple-harmonic wavy 
surface (Fig. I). 

In the absence of the waviness of interface, the fields 
of velocity, temperature and concentration are solved 
in the previous paper [l]. Denote them as (U, V), 0 
and W. respectively. Here, the velocity components 
(U. V) are non-dimensionalized by I/, and the tem- 

perature by ( T2* - T, ,) as 

Ignoring the possible instability of the flow system 
with respect to time and accordingly taking the dis- 
turbance to be stationary relative to the wave on the 

I nterfcce 

r, 

FIG. 1. Laminar boundary-layer flows 
of gas and liquid having a wavy phase- 

changing interface. 

interface, we can study explicitly the interesting effect 

due to the presence of a wavy phase-changing interface. 
It is thus convenient to use a reference frame in 
which the wave on the interface is stationary, moving 

at speed c with the wave, so that the velocity parallel 
to the interface is (U - c), which is henceforth denoted as 

u* = u-c. 

In the case of the liquid stream dragged by an air 

flow, the wave speed of the interface would be of the 
order of the mean velocity of the liquid, so that we 

can approximate U,* = O(U,) which would be a very 
small fraction of the velocity of the air flow at infinity, 
since U, z {P:vil(P:v2))“3 PI. 

The elevation of the wavy interface is taken to be 
of the form 

b = GOePX, (I) 

where the amplitude 6, is assumed to be small com- 
pared with the wave length 2n/c( so that (a~&)~ is to 
be neglected. Let (u, u), 0 and M: be the associated 
disturbances of velocity, temperature and vapor- 

concentration. respectively. The equations of con- 
tinuity, momentum, energy and concentration for the 
disturbance fields can be written as 

du -+” = 0, 

?x ?y (2) 

(“*;+v;)( ;> +(g++( iJ 
(72 

qvh.8) _+E 
to 

3 3 ( )(I %X2 Py2 
n . (3) 

w 
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where v is the kinematic viscosity, K the thermal where the subscript 0 refers to values at the mean 

diffusivity, E the concentration diffusivity of the vapor, position of the interface y = 0. This means that the 

and corresponding disturbance amplitude of the quantity at 

irli dV au iI 
the interface &, eiax can be expressed as 

Here, all variables representing a length are rendered 
\_I/” 

non-dimensional by using, in the gas and liquid fluids The x-component of the disturbance velocity and 
respectively, the characteristic lengths 1,, and lrZ ; the disturbance temperature must be continuous at 

L1 =J(gJ lr2 =@). the interface; 

_ _ 
UlO = u20, (9), 

The introduction of these characteristic lengths allows &cl+Q20 = 0, (9), 
similar solutions for the base fields of velocity, tem- 
perature and concentration with a plane phase- where subscripts 10 and 20 denote the values at the 

changing interface and thus for their perturbation interface of the upper and lower fluids respectively. 

(disturbance) fields with a wavy interface of small The continuity relationships of the total mass of fluid 

amplitude. Diffusivities v, K and E are made dimen- and the mass of vapor at the interface give 

sionless on the understanding that l,U, is the unit. 

Taking into account the equation of continuity, we 

put the disturbance velocity components as PI(F,-U*~)o=P*(B2-U*~)o, (9), 

u = if’(y) dUX ) u = af(y)e'"". 

With the boundary-layer approximation, equation (3) 

for w is then reduced to 
= 

a(iU*F-iU’lf) = v(F”-a2E), F Z f”-CI’f (5) 
Pl(B1-u*~)o, (9), 

Writing the disturbance temperature and concentration respectively, where p is the density, being assumed to 

lr be constant. The additional tangential stress due to 

0 = g(y) eax, w = h(y) ehx, 
the disturbance and the energy flux must also be 

(6) continuous at the interface; 

we have from equations (3) 

a(iU*g+Olf) = K(g”-a*g), 

a(iU*h+ W’f) = E(h”-X2h). 

(7) 
Consider now the boundary conditions of the dis- 

Plv,(~+30 = P2v2(i$+30. (9), 

46, -U* z). = i,($). +I*($),, (9), 

turbed field. At large distances from the interface, the 
disturbances must vanish so that we have 

f*u=f;m=O, gim=O, h,,=O. (8) 

Since the boundary conditions at the interface must 
be satisfied just at the wavy interface y = 6, it would 
seem that the boundary conditions at the mean position 
of the interface y = 0 might require a further restriction 
on the wave amplitude so that, within the range of 
the distance normal to the interface less than the 
amplitude, the variations of U, 0 and W are negligibly 

where L is the latent heat of vaporization and 1 the 

heat conductivity, being non-dimensionalized by the 

quantitiesc,,(T,,-TI,)andplc,,U,l,,,2 (cP: specific 
heat), respectively. 

The vapor at the interface can be assumed to have 

the state of saturation which holds Clausius-Clapey- 
ran’s relation 

dps L T,co-TI, ps 
c=R To T,’ 

small. This severe restriction can be avoided by the 
linearization of boundary conditions at the interface 

where p is the pressure non-dimensionalized by pr VA 

y = 6 as pointed out by Benjamin [2] and Landahl [S]. 
and R the gas constant divided by cPl. This relation 

A quantity @+ 4 etix is linearized at y = do eax in do as 
gives the disturbance concentration (or partial pressure) 
of the vapor at the interface - _ 
$0 = w, $-fg = H*&,-H,(p,,-g16,), ( > (9), 

s 10 
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where g l is the gravitational acceleration non-dimen- 
sionalized by U~ll,, and 

H,= wo;(“-,“-)‘. HP=: 

By equations (4) and (6), these boundary conditions 

at the interface are rewritten in (f, g, h) expression 
as follows; 

(fFiCSi)0 = (fi-iW2)0, (10)” 

(Sl +@;&)o +(92 +@;62), = 0, (1% 

ha~(.h - iU*61)0 = p2cr2(f2 - iU*S2h, (1% 

a~(Wo- l)(h --iU*6Ao + Kdh+ w’&h 

--E(h)+ W”SJO = 0, (lo), 

= Pzv2(f;l-~~;~2+~:fz)o, (W, 

= ~l(g;+o;6,),+i,(g;+o';6,),, (lo), 

Vi+ W’&)o = H,(g, f@l6,)” -Hi&, -!7,61)0 (lo), 

where the primes indicate derivatives with respect to y, 
being non-dimensionalized by &r or 1,2. t;,, and PO are 

approximated by u,, and pO, respectively. The wave 
number c( and the amplitude of the wavy interface & 
have the relation that 

a1610 = ~2~20> alxl = ct2x2 =c?x. (11) 

k is the amplitude of the disturbance pressure defined by 

p = ke”“, (12) 

which is obtainable from the equation of motion in 

the x-direction; 

ctk = v{f”‘-iv”‘6-cr2(f’-iU’G)} 

-iaU*(f’-iU’b)- V(f”-iU”6)+ictUlf. (13) 

The balance of normal stresses at the interface may 

give an additional relation of the pressure (including 
the effect of gravity and surface tension). We consider 

only the disturbances stationary relative to the wave 
on the interface so that there exists reaction for the 
disturbance flow to maintain the specified wavy dis- 
turbance. Without the external forces corresponding 
to such reaction, the wave number should be deter- 
mined by an eigen-value problem of the system. If we 
take the normal stress condition as the external 
necessity of maintaining the disturbance of wave 
number a, the disturbance pressure is then determined 
as a subsequent quantity of the resulted disturbance 
field. 

We have thus two fourth-order differential equations 
for f and two second-order for g and one second-order 
for h with seven boundary conditions at infinity and 

seven at the interface. In view of the boundary con- 
ditions at infinity. f, g and h can be written with 
constants A,,, B,, C, and D as 

L = A.Ln+Kfin, 
gn = A,gm+&g,,+Cng,,, (n = 1,2) 

I 
(14) 

h = Alh,+Blhb+Dhd, 

where f. and fb are the solutions of equations (5), 

g., gbr h, and hb the solutions of equations (7) cor- 
responding to fa and fb, respectively, and ge and hd 

those of equation (7) with f E 0. The boundary condi- 
tions at the interface can be expressed in the form 

+d,D+e,& = 0, 

(m=u,s,c,t,q,w,e) (15) 

where a,.,“, b,,, c,,, d, and e, are functions of the 
values of f, g and h at the interface (see Appendix). 

The solution of equation (15) gives A,, B,, C,, and D 

corresponding to 6e. Since equation (15) is linear, we 

can set &, = 1 for simplicity; thus, values of A,, B,, 

C,, and Dare to be interpreted finally as a multiple of &,. 
In order to examine quantitatively the effect of the 

wavy disturbance, we proceed to an analytical treat- 
ment of the problem with an approximation of linear 
profiles for the mean field. Since the disturbances 
diminish very rapidly with increasing the distance from 

the interface, the region where the magnitude of dis- 
turbances is significant in comparison with their values 

at the interface can be assumed to be largely covered 
with the linear profile region of the mean field, over 

which we can assume approximately 

U = u,+u;y, 0 = o,+o;y, 

W= W,+W;y. (16) 

With this linear distribution of the mean velocity, 

equation (5) can be reduced to 

F”+; U;(y+X$)F = 0. (17) 

Defining a co-ordinate z as 

z = y+z(), 20 = (U,* - lav)/U;, (18) 

we can rewrite the above equation for the upper fluid, 

F[+P,z,Fi = 0, /Ii = -iaiU;o/vl, (17) 

of which the solution is a linear combination of the 
functions F(‘)(z) and F(‘)(z); 

F”“‘(Z) = &H,'fj2'(*fiZ3'2), 

where H# and H,‘$ are the Hankel functions of order 
one-third of the first and second kind, respectively. 



Accordingly, equation (5) for the upper fluid 

.f;‘- atfi = FI 
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we obtain the following solutions of equation (25) for 

(19) 
the upper and lower fluids, respectively, 

subject to the boundary condition fi = f,’ = 0 at 
y, = co has the solution of 

[ 

s =I 

2 F$*)‘Z’(Osinhfccl(zt -0) d5 

+I& #‘P’- 210 
m , (20) 

elm 
s 

Fi2)(t) emnit d5 I 
zio 

For the lower fluid (y < 0), denoting 

&=92-t-220, pz= -yz, .&)= -220, 

82 = i~2%Iv2, (21) 

we can take the same manipulation as the above to 
obtain 

Values off, f' and f” at the interface are thus given by 

, no = A,+&, f 
$0 = (- lY’UA,--&J, (n = 1,2) 

> 
(23) 

fn(6 = ~~~A~+(l-~~)~“~, 

where 

Next, we consider the temperature field. Equation (7) 
with (16) becomes 

where 

z, = y-l-z,o, z,o = (U,*-iuK)/U;, 

a = - ict t&/K,, . (26) 

Defiling functions G(l) and G(‘) as 

G”,“(z,) = Jz,H,c:s2’Cf,/‘&,312,, 

which means IT,,] >> 1, and similarly Gnvro, Gmno, Hnro 
and HA, as a power function of &, or & as shown 
in Appendix (A5). 

Substituting values of f, g and h at the interface 

-,- _* . . ,_ (23), (28) and (29) with these approximations into the 

g1 = ClG\2'+~~o;o 
hl 

With equations (20) and (22), equation (27) gives values 
of g and 9’ at the interface 

gno = A,G,,o+B,Gb,o+C,G,,o, 
(?I = 1,2) (28) 

sko = AnG:no + KG;,,, + CnGcnot 

where Gmno and G&,,, are functions of z,,, and given 
by equation (A3) in Appendix. 

Replacing K and Ok by E and Wd in equation (27), 
we obtain in the same way vafues of h and h’ at the 
interface 

ho = Alffao+BlHbo+DHdor 

ho = AIH;,,+B~H&,+DH;~, 
(29) 

where Ha0 and HA, are functions of zzo and given by 
equation (A4) in Appendix. 

Since we may consider the length 1/11-“3 as a 
measure of the effective thickness of the disturbance 
field, the assumption that this thickness is small com- 
pared with the thickness of linear profile of the mean 
field can therefore be expressed as //?I-““a = O(1) or 
less which means 

%KO ( 1 
-113 

a1 - < 1. (301 
Vl 

Thus, for sufficiently small wave numbers, taking 
account of U,* = O(U,), we may take /@1/2z~‘2 1 cc I 
which requires 

(31) 

For the present configuration of the flow system, the 
last condition could be always satisfied if al and vl 
have the relation of alU~,/vl = O(1) or less. We can 
now approximate T= as 
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boundary condition (15). we can determine constants equation shows that the most predominant on the left 
A,, B,, C,, and D to obtain the disturbance field at the side is the one attributed to the disturbance con- 
interface, equations (AX) and (A9). vection field (- zl) and on the right those due to the 

The disturbance normal velocity at y = 0. cc,fiO, is disturbed temperature field (-oh) and due to the 
thus explicitly given by equation (A@ as disturbed convection field (-ri). so that we can 

where I,, = 3’:31($/)/1-(~):). The right side of the above 
equation means the disturbance heat ffux into the 

interface and the left is the disturbance amount of 

phase-change. Both sides physically consist of three 
terms. attributed to the disturbed convection field 

(-xl). the disturbed temperature field (-G&J and the 

change in the interface temperature (-H,-I), re- 

spectively. The disturbance rate of phase-change 
di,J( Vi,$i) = c(i(,{i -iU,*)/V,, is graphically shown in 
Fig. 2. The order estimation of the terms of the above 

where U&J&, = plvlj(ptv,f is used. The normal 
velocity at the interface is thus proportional to the 
lj3rd power of the wave number with the phase lag 

of 150” relative to the interface, as shown in the figure. 

The disturbance velocity gradient at the interface 
iY,,/(U;,&,) = if;b/U;,given by equation (A8) is shown 
in Fig. 3. It is noted that iYiO implies the disturbance 
friction coefficient at the interface cl defined by 

of which dimensionless form is cSlrl/vl = ir;,. With 
equation (34) and the relation that 1~~1, 1~~ 1 >> 1, we 

approximate the disturbance normal velocity as 

or the disturbance rate of phase-change as 

(-@;o)*=_@;o+e-"/3 PlKl _i'o;o. 

( ) 

'13 3, v 

P2K2 R,Y2 

/A 

80 
,A* 

r- 

L 

J_/’ 
_.-I 

0 02 _U5 _.i I i-._L__.U-1 
C) ‘31 Cl 01 

Ql ai 

(a) Amplitude. (b) Phase angle. 

FIG. 2. Disturbance rate of phase-change. Water-air, T, m = l@Y’C, c = 0; -, Tza. = 6O:‘C, W, = 0; _-_, v; 1 = 10, f$f, = 0; 
---) “1 -I = 10, 7’2, = 60 

c 
C: VI<,(% “C, W,) = 000123(20.0), 0.00989(60,0), 0~000472(60,02), 0.0245(80,0). 
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(a) Amplitude. (b) Phase angle. 

FIG. 3. Disturbance friction coefficient. Water-air, TI m = Iw”C, c = 0; -, Tz, = 60°C. W, = 0; ---. v;’ = 10, w, = 0; 
---, v;’ = 10, Tz, = 60°C: U;,(Tz,“C. W,) = 0,323(20,0), 0263(60,0), 0.329(60, @2), 0,168(80,0). 

obtain the following approximate expression for fLo, 

(36) 

where rI = 31/3/r($) and Tz = 3213/T($). The right side 
of the above equation comprises two contributions 
from the disturbance fieIds of the modified mean field 
of velocity [the first ( - ct4j3) and second ( - ~1~‘~) terms] 
and of the disturbed velocity field due to the phase- 
change [the third (*Ix~‘~) and the fourth ( -aa)], The 
latter contribution, that is, the phase-change at the 
interface has less effect upon the friction coefficient 
I(;~, which is then largely dominated by the second 
term, being proportional to (c(~/v~)~‘~ and 30” in 
advance of the intelface. 

The disturbance pressure pIo/6, = kIo is given by 
equation (13) and shown in Fig. 4, being proportional 
to (al/v,)- l/3 and (alivI)“” at smaller and larger wave 
numbers, respectively. In the analytical expression of k 
by equation (13), the most predominant is vf”‘; 

Since equation (20) gives fib’ approximately as 

with equation (34) and (42), kIo is then given by 

of which the third and second terms become more 
effective at smaller and larger wave numbers, being 
proportional to a; ‘I3 and cl:j3, respectively. with the 
phase advance of 150”. 

An interesting feature of equations (36) and (37) is 
the phase relation between the stress and the wave at 
the interface. To first approximation, shearing stress 
(-u;~) is approximately 30’ in advance of the wave, 
while the phase of the normal stress is about 150” in 
advance. These phase relations are accordant with the 
Benjamin’s result of linear or boundary-layer profile 
model, which may be interpreted as a kind of Jeffereys’ 
“sheltering” effect that the stresses are distributed as 
if the leeward slopes of the wavy interface were 
sheltered and a wake were formed behind each wave 
crest. The effect of the phase-change upon the stresses 
at the interface is expressed by the terms of (-O;,‘)* 
which becomes relatively predominant at larger wave 
numbers or for the case of higher vapor concentrations 
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0 01 I I LII I I II 60L I I III I I,, 

0 01 01 001 01 
ai aI 

(a) Amplitude. (b) Phase angle. 

FIG. 4. Disturbance pressure at the interface. Water-air, T,, = lOO”C, c = 0; -. T,, = 60°C W, = 0; ---, v;’ = 10, 
w, = 0; ---) v;’ = 10, T,, = 60°C. 

at infinity (condensation taking place at the interface). O;,/(@‘iO~,) = g’ro/O’i,given byequation(A9)isshown 
They have the phase relation of 1.50” for ui9 and -90" in Fig. 5, being proportional to c(:~“~. Here, ) -f&,j 
for ki9 in advance, respectively, and act to weaken implies the amplitude of the disturbance heat-transfer 
the “sheltering” effect in the phase relation. In the coefficient at the interface ch defined as 
evaporation case, the “sheltering” effect may be also 

reduced in amplitude by the decrease of U;, and -Vi,. 
8T, 

11 - =c,,(Tiol-L). 
The disturbance temperature gradient at the interface i > +1 0 

““2 ‘so’ I 

-150- 

o,- 
-zz 

f-6 

. o_ 
@ 

v;' 

7 100 

.g 10 r2,°C 80 - /’ / O.FT_ 

____________-_-_-----------_, 
20 

(a) Amplitude. (b) Phase angle. 

FIG. 5. Disturbance heat-transfer coefficient. Water-air, T,, = lOO”C, c = 0; -, Tzoa = 60°C w, = 0; ---, v;’ = 10. 
w, = 0; ---, v;’ = 10, Ttrn = 60°C: - O;,(T,, “C, W,) = 0288(20,0), @243(60,0), 0.292(60,0.2), 0.169(80,0). 
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of which non-dimensional form is c,&/.dl = -0 iO. The approximate expression for g\,, is 

glo = i&2x/3 r,(u;,)l/3 2 0 
113 

I 

where r3 = 3-7’6/r(& which comprises the effects of 
the disturbed temperature field due to the disturbed 
flow (the first and third terms _ 06) and the dis- 
turbance amount of heat for phase-change (the 
second - L). The predominant terms of them yield 

which shows the proportionaIity to Q&I)“3 and the 
phase lag of 90” in the case of intense evaporation. 

Comparing the predominant terms of equations (36) 
and (39) gives 

of which the order of magnitude is about 0.1, being 
contrasted with the steady vaIue lO;,/U;,/ z 1. This 
indicates that the waviness of the interface causes 
disturbance to the heat-transfer coefficient by one 
order of magnitude less than to the skin-friction. Of 
the temperature field, the wavy disturbance at the 
interface is almost absorbed into the liquid because 
of its high heat conducti~ty and the heat flux required 
for thedisturbance rate of phase-change at the interface 
is supplied mostly by the heat conduction through the 
liquid layer. 

The disturbance coefficient of heat transfer of the 
liquid side is then given by 

(-@lo)* (41) 

of which the ratio to gio is (p1~1/pZ~Z)1’3 =0.1-l. 
On the other hand, the ratio of f;b to f;b is 
pIYI/p2v2 = 10-2-10-3. 

The disturbance u-velocity and temperature at the 
interface given by equations (AS) and (A9) are approxi- 
mated as 

ifi z -U’ &P1”: 
10 ( ! P24 ’ (42) 

glox e (43) 

To first approximation, both disturbances are reIevant 
to neither the wave number nor the Reynolds number. 
These equations show that the overall disturbance 
u-velocity at the interface ii,,, which is the sum of 
$‘061 and U;&, is nearly equal to zero; that is, the 
overall u-velocity at the interface remains undisturbed. 
Since /gIO1 <c lO;,/, the overall disturbance tempera- 
ture at the interface is then roughly &, z O\061. 

CONCLUSION 

Laminar bounda~-layer flows of gas and liquid 
having a phase-changing interface are perturbed with 
a small wavy disturbance to examine the aspect of 
their disturbed fields and the effect of the phase-change 
upon the hydrodynamic instability of the system. To 
obtain quantitative knowledge of the wavy disturbed 
field, the problem is treated analyticalfy with an ap- 
proximation of linear profiles for the base field. 

Corresponding to the disturbance elevation of the 
interface a0 eirx, the disturbance u-velocity gradient at 
the interface, that is, the skin-fiction is 

The disturbance pressure acting on the interface is 
given by 
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To first approximation, the phase relation of the 

shearing stress (+30”) and the normal stress (+ 150”) 
relative to the wave at the interface is accordant with 

the Benjamin’s result for the case of isothermal flows, 

showing the “sheltering” effect. The phase-change of 
evaporation at the interface acts to weaken such a 
“sheltering” effect both in amplitude and in phase 

relation, especially at larger wave numbers. 
The disturbance rate of phase-change at the interface 

is approximately estimated as 

which is proportional to (rr/~~~)“~ with the phase lag 
of 150’. The temperature gradient at the interface. 

that is, the heat-transfer coefficient is 

+Uz(l -~jei"I')lSlae"'. 

Nhich. for intense evaporation, is proportional to 
(scI/til)‘/” with the phase lag of 90’. 

Because of the high heat conductivity of the liquid, 
the heat flux required for the disturbance rate of 

phase-change at the interface is supplied mainly by 
heat conduction through the liquid layer, so that the 
wavy disturbance has less influence upon the heat- 
transfer coefficient than upon the skin-friction. The 

ratio of the former to the latter is about 

The disturbance u-velocity and temperature at the 

interface are relevant to neither the wave number nor 
the Reynolds number and approximately given by 

which have the phase advance of 180” and 120”, 
respectively; that is, the overall disturbance u-velocity 
and temperature at the interface can be approximated 

_’ 
as uIO z 0 and 0, 0 z 0; ,6 t 0 eiaX, respectively. 

The assumptions which form the basis for the ap- 
proximations introduced in the present theory may 
restrict the validity of the obtained result within the 
range of parametrical quantities r, and v, that 

and 

(T~j’~2(.sj3’2 << 1. 

Since the latter is satisfied for the present flow- 

configuration if c(r U;O/vI 5 1, these restrictions can be 
arranged to give 

I. 

2. 

3. 

4. 

5. 
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APPENDIX 

Disturbance Field at the Interface 

The boundary conditions at the interface (15) with rSO = 1 
are expressed in a matrix form 

= 0 
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where a Inn> b c d and e,(n = 1,2)arefrom equation (10) nlnr nt”l m 
as follows; 

nun = - (- U”Gh b,. = (da-b 

e, = -i(U;,- U&v,/v,) 

asn = - (- l)“~,v.(fd:, +a%)o b,, = (asJo-b 

e, = -ivI(pIU;0-p2U;)0) 

am = - (- l)“~~v~(.L)~ b,, = (acJa-b 

r,= -i(or-pz)vIG,* 
Values off, g and hat the interface are given by equations 

(23) (28) and (29) where Cm”,,, CL.,, H,,,, and H,& are 

et = (h,-H,gol +H,k.& b,l = (aA+b 
G a Rio = Gf’(z, IO) G;IO = G\“‘(z,Io) 

G 
c.1 = -H&A d, = (hd)o e, = -H,g,+wd-H,@\o 

- Gi%,za) G:zo = G$“‘(z,zo) c20 - 

where ( ),,+ means that all values of the type 4.. included 
H,o = H,H~“(z,,,) H;, = H,,,H,““(z,,,) 

in ( ) are replaced by the corresponding values &. 
Eliminating Cr, Cz and D in equation (Al) becomes irra, a 

H, = z ; VT’; 

~~=*~::J:;(:~:~:l 

H;“F,, d< 

where F,, and Fbn are the coefficients of A, and 
the right of equations (20) and (22) respectively. .^ ^_ 

(A3) 

(A4) 

t?, on 
When 

lb “‘zi” 1 << 1, we can approximate these values as follows; 

(A5) 

e(n, x) = exp{ - (- i)“x} 

which hold for H and H’ by replacing K and 06 by E and 
Wd, respectively. 

Substituting values off, g and h at the interface given 
by equations (23) (28) and (29) with (A3), (A4), (AS) and (32) 
into the boundary conditions (AZ) yields 

o+bf at b: -iffrUo*+e* 

= 0 
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where 

l-w,-3-“3r(5)8~-“3wd 

V,, + ebri3 31/3 F(+)/F(f)f$j” 1 

r(3) II 
p* = _en/3 31’3 _ _ 

u:) L 
B 

Ji’ 

x 
[i 

-O\o+e- iZz\3(hJ3 : 2 @;,} 

+i{ 1 +e-w3(!k)“3 !z} 

ia,(w,-I)Uo*+e”i33”3r(S)/r(f)sP,”3W 

vi, +ebri3 3i’3r(f)/r(f)sjY3 1 

Equation (A6) gives constants A, and B. 

(A7) 

where p1/p2 cc 1 is assumed. 
With these constants, equations (23) give the disturbance 

Row field at the interface: 

f;,, = Al+BI = ${ia,(l -z) W-e*} ’ 

By eliminating C2 with equations (Al), and (Al), to 
obtain C,, equation (28) gives the disturbance thermal field 
at the interface; 

where, in virtue of equation (A5), we can use the following approximation 

where n = 1,2 and e(n, x) = exp{ - (- 1)“~) 

ECOULEMENTS GAZ-LIQUIDE A COUCHE LIMITE LAMINAIRE 
AVEC UN INTERFACE ONDULE DE CHANGEMENT DE PHASE 

Resume-On Ctudie analytiquement des Ccoulements de gaz et de liquide a couche limite laminaire avec 
un interface ondule de changement de phase, pour determiner la configuration du champ de perturbation. 
Le champ de base est approche par des profils lineaires et perturb5 par des petites ondes de perturbation. 
La vitesse de changement de phase a l’interface est perturbs proportionnellement a la puissance l/3 du 
nombre d’onde. La relation de phase des contraintes tangentielles et normales a l’interface implique la 
possibilitt dune instabilite “d’onde liquide” a effet de protection comme dans le cas isotherme, bien que 
le changement de phase a l’interface agisse pour diminuer cet effet a la fois en terme d’amplitude et 

de phase. 
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LAMINARE GAS-FLUSSIGKEITS-GRENZSCHICHTSTRt)MUNGEN 
MIT WELLIGER GRENZFLACHE 

Zusammenfassung-Laminare Grenzschichtstrijmungen von Gas und Fliissigkeit mit welliger Phasen%n- 
derungsgrenzfltihe werden analytisch untersucht, urn die Eigenschaften ihrer gestarten Schicht zu 
bestimmen. Die Unterschicht wurde durch lineare Profile mit kleinen, welligen StGrungen angenaert. 
Die Phasenhderungsrate an der GrenzflLhe ist gestijrt proportional zur Potenz l/3 der Wellenzahl 
mit der Phasenverschiebung 150” relativ zur Grenzfl2che. Die welligen StGrungen haben einen urn eine 
GrGI.?enordnung kleineren EinfluW auf den WPrmeiibergang an der Grenzfliche als auf die ObertILhen- 
reibung. Beide Koeffizienten sind proportional der Potenz l/3 der Wellenzahl. Der Phasenzusammenhang 
der Scher- und Normalkrtite enth2lt dieselbe Mb;glichkeit der “Wasserwellen”-1nstabilitLt des 
Schutzeffektes wie fiir den isothermen Fall, obgleich der Phasenwechsel an der Grenzflgche beziiglich der 

Amplitude und des Phasenzusammenhangs eine Verminderung eines solchen Effekts bewirkt. 

JIAMPiHAPHbIE I-IOrPAHM=IHbIE CJIOI4 B )KCMflKOCTH M TA3E I-IPIJ H3MEHEHI4M 
QA3bI BOJ-IHbI HA IJOBEPXHOCTM PA3jJEJIA 

AHHoTaqHn--DAna A3y'ieHHROCO6eHHOCTefi nOJI5IB03MyLlIeHAkaHaJIlrWieCKEitiCCJIeAOBaJIFiCbJIaMH- 
HapHbIenOrpaHllYHbIeCJIOH BTa3eH ?KHAKOCl&i 86nw3n nOBepXHOCW pa3AeJIa npHH3MeHeHKEi4a3bI 

BO~HbI.~CHOBHOenOAeann~OKC~M~~OBa~OCb~WHe~HbIMHn~O~H~llMIIHHa~yLUa~OCbH~60nb~AMA 

BOJIHOBbIMH BOSMyIIIeHAIIMH.CKOPOCTb A3MeHeHWR +a3bl BOJIHbl Ha nOBepXHOCrH pa3AeAa RSMeHR- 

ew3 nponopuuoeanbno B~IIHOB~M~ wicny B cTeneHti l/3 c 0xTaBaHIieM no +ase B 150” 0~H0cn- 
PeJIbHO nOBepXHOCW pa3AeJIa. BOnHOBble B03MyIQeHIIR Ha nOBepXHOCT8 pa3AeJIa CKa3bIBaEOTCR Ha 

'renJlOO6MeHe Ha ~OPRAOK cna6ee, 'IeM Ha IiOBePXHOCTHOM TpeHHH. 06a K03@@WIeHTa IIpOnOp- 

~IiOHaAbHbIBO~HOBOMy~rtC~yBCTeneHH~/3.~OO~HO~~HAe~a3Me~AyKaCa~eAbHbIMliHO~MaAbHbIM 

HanpameHBRbni Ha noeepxHocTIi pasnena npejmonarae-r, xax u B HsolepMaqecxux cnyqaflx, He- 
CTa6HJIbHOClb OnpOKHAbIBaIOIUerO 3$+eKra, XOTR WJMeHeHHe @a3 Ha nOBepXHOCW pa3AeJIa 

o6nerqaeT noflaneHAe3Toro s+@eKla KaK no aMnneTyAe,TaK u no @ase. 
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